
J. Phys.: Condens. Matter11 (1999) L363–L369. Printed in the UK PII: S0953-8984(99)05030-4

LETTER TO THE EDITOR

Spin fluctuation-induced superconductivity inκ-BEDT-TTF
compounds

Hisashi Kondo and T̂oru Moriya
Department of Physics, Faculty of Science and Technology, Science University of Tokyo, Noda
278-8510, Japan

Received 8 June 1999

Abstract. Spin fluctuation-induced superconductivity in quasi-two dimensional organic
compounds, κ-BEDT-TTF salts, is investigated within a fluctuation exchange (FLEX)
approximation using a half-filled Hubbard model with a right-angled isosceles triangular lattice
(transfer matrices−τ ,−τ ′), extending a previous work aboveTc. An energy gap of A2 or (x2−y2)-
type develops with decreasing temperature belowTc more rapidly than in the BCS model. The
calculated dynamical susceptibilities enough belowTc show sharp resonance peaks like those in
certain cuprates superconductors. The calculated nuclear spin-lattice relaxation rate 1/T1 shows
a T 3 behaviour belowTc in accordance with experiment. Estimated values of 1/T1 are roughly
consistent with experimental results. A prediction is made for the doping concentration dependence
of Tc and the antiferromagnetic and superconductive instability points are calculated in theU/τ

againstτ ′/τ plane.

Recent theoretical investigations indicate that the superconductivity in quasi-two dimensional
organic compoundsκ-(BEDT-TTF)2X (whereX = Cu{N(CN)2}X′, X′ = Cl, Br) can be
explained in terms of the spin fluctuation mechanism [1–5]. The calculated values for the
transition temperatureTc as well as the d-wave character of the order parameter seem to be
consistent with the existing experimental results [6–11].

In a previous paper we have reported the results of calculations forTc and the normal state
properties of these compounds by using a Hubbard model consisting of dimer orbitals [1]. The
purpose of the present communication is to report on the results of our extended calculations
mainly to include the superconducting state.

The model and the approach are the same as those discussed in [1]. We use a half-filled
Hubbard model with a right-angled isosceles triangular lattice consisting of the anti-bonding
dimer orbitals with the inter-dimer transfer integrals−τ and−τ ′ as shown in figure 1. The
estimated values for the transfer integrals areτ ∼ 0.07 eV andτ ′/τ ∼ 0.8 [12, 13]. We
use the fluctuation exchange (FLEX) approximation where the dynamical susceptibilities are
calculated within the renormalized random phase approximation (RRPA) and the normal and
the anomalous self-energies are approximated by the simplest ones including a spin fluctuation
propagator without vertex corrections. This approximation has been successful in many
previous investigations on high-Tc cuprates, etc [14–21] and recent studies on the vertex
corrections seem to indicate that its effects will not seriously modify the FLEX results [22].

Before reporting on the results belowTc we show in figure 2 the calculated phase
boundaries, in theU/τ againstτ ′/τ plane, between the paramagnetic metallic (PM) and
the antiferromagnetic (AF) phases and between PM and the superconductive (SC) phases.
The former is obtained from the points where the value of 1/χQ extrapolated toT = 0
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Figure 1. (a) The model unit cell and the transfer integrals. (b) Unperturbed Fermi surface for
τ ′/τ = 0.8. Dashed lines show the antiferromagnetic zone boundary.

vanishes. The latter is obtained from the points of vanishingTc calculated by extrapolating
the Tc/τ vs. U/τ plots, shown in the inset of figure 2, using the Padé approximants [23].
This result, being consistent with the conjectures in [1], shows that the AF and SC instabilities
compete with each other and the latter wins for the values ofτ ′/τ larger than∼ 0.3. In
other words, the d-wave superconductivity appears near the antiferromagnetic instability only
when the electronic structure is favourable; an antiferromagnetic instability is not necessarily
accompanied by a d-wave superconductivity. With increasingU/τ from a superconducting
instability point we expect a phase transition to an antiferromagnetic state. The phase boundary
between the superconducting and antiferromagnetic phases must be obtained by comparing
the free energies of the two phases, since the phase transition is naturally of the first order.
This task is left for future studies.
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Figure 2. Instability points of the paramagnetic state against superconductivity and
antiferromagnetism. Inset shows the results of an improved calculation forTc/τ vs. U/τ .

Figure 3 shows the calculated values ofTc for τ ′/τ = 0.8 for various values ofn, the
number of electrons per site, andU/τ . These results may be regarded as a prediction for the
doping concentration-dependence ofTc in κ-(BEDT-TTF)2X.

Now we discuss the properties in the superconducting state. We first show in figures 4(a)
and 4(b) the anisotropy and the temperature dependences of the gap function1k =
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Figure 3. Electron number (doping concentration) dependence ofTc/τ for τ ′/τ = 0.8.

Re{1(k,1k)}, respectively, where the gap function is defined by

1(k, ω) = 6(2)(k, ω + iη)

Z(k, ω)

ωZ(k, ω) = ω − 1

2

[
6(1)(k, ω + iη)−6(1)(k,−ω − iη)

]
(1)

6(1) and6(2) being the normal and the anomalous self-energies, respectively. The symmetry
of the gap function is clearly of A2 or (x2− y2)-type and its amplitude develops more rapidly
than in the standard BCS model belowTc. Figure 5 shows the renormalized density of states
at various temperatures, indicating how it is influenced by the d-wave gap formation with
lowering temperature. As is expected from figure 4 the energy gap in the density of states
develops rapidly with decreasing temperature, approaching close enough to a limiting result
at aroundTc/2.
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Figure 4. Calculated gap function. (a) Temperature dependence of1k, with k indicated by an
open circle on the Fermi line shown in the inset. (b) Anisotropy or the wave vector-dependence of
1k, with k on the Fermi line shown in the inset of (a).

The calculated dynamical susceptibilities well belowTc show strong resonance peaks
around(π, π) and(π,−π), just as in the calculations for the high-Tc cuprates. Similarly to
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Figure 5. Density of states at various temperatures.

those in cuprates we interpret this resonance peak as a spin exciton [15, 20], a bound pair of
an electron and a hole excited across the energy gap. Figure 6 shows the imaginary part of the
dynamical spin susceptibility atq = (π, π) at various temperatures. We see how the resonance
peak develops from a broad spectrum in the normal state. Figure 7 shows the dispersion and
broadening of the spin excitons. The resonance peak positionωq and the widthγq are given
by

1− UReχs(q, ωq) = 0

γq = Imχs(q, ωq){
∂Reχs(q, ω)/∂ω

}
ω=ωq

(2)

with

χs (q, iωm) = −
T

N0

∑
k,n

[G(k + q, iωn + iωm)G (k, iωn)

+F (k + q, iωn + iωm)F (k, iωn)] (3)

whereωm andωn are the Bose and Fermi Matsubara frequencies, respectively, andG(k, iωn)
andF (k, iωn) are the renormalized normal and anomalous Green functions, respectively. The
resonance peak appears only in limited regions of theq-space around(π, π) and(π,−π). We
show in figure 8 the temperature variation of theq-integrated intensity spectrum. It is desirable
to have the corresponding neutron inelastic scattering experiments on single crystals in future
although such an experiment, with a deuterized sample, does not seem to be very easy.

The nuclear spin-lattice relaxation rate can be calculated from the following general
formula [24] using the FLEX dynamical susceptibilities:

1

T1
= γN

2T

N0

∑
q

∣∣Aq∣∣2 Imχ−+(q, ω0)

ω0
(4)

whereγN is the nuclear gyro-magnetic ratio,Aq the Fourierq-component of the hyperfine
coupling constant, andω0 the resonance frequency. We may neglect theq-dependence of
the hyperfine coupling constant which is anisotropic at the site of13C. According to [8] the
principal values parallel and perpendicular to the direction of the13C=13C bond area +2B and
a−B, respectively, witha = 1.3 kOeµ−1

B andB = 2.1 kOeµ−1
B for one spin per molecule; thus

these values should be divided by 2 for one spin per dimer. For experimental results under the
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Figure 6. Calculated imaginary part of the dynamical susceptibility forq = (π, π) at various
temperatures.
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Figure 7. Dispersion and broadening of the resonance peak or the spin excitons. (a)T/τ = 0.0070,
(b) T/τ = 0.0143.

magnetic field parallel to the conducting layer we may approximately replace
∣∣Aq∣∣2 in equation

(4) with [(a + 2B)2 + (a − B)2]/8, since the C=C bond direction is nearly perpendicular to
the layer. The result of calculation using this value for the coupling constant is shown in
figure 9. TheT 3 dependence of the relaxation rate belowTc as observed experimentally is
well reproduced [7, 9, 10]. The order of magnitude also seems reasonable, in view of the
approximate nature of the calculation. The observed values of 1/T1T aboveTc has a peak at
T = T ∗ ∼ 50 K. Above this temperatureT ∗ the system shows insulating behaviour while the
system is metallic belowT ∗. Thus aboveT ∗ we had better use the Heisenberg model with the
Anderson superexchange.
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Figure 8. q-integrated spectrum of the imaginary part of the dynamical susceptibility.
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Figure 9. Calculated nuclear spin-lattice relaxation rate 1/T1 (logarithmic plots). The dashed line
indicates aT 3 behaviour. Inset shows 1/T1T (normal plots).

ForT ∗ > T > Tc the observed values for 1/T1T decrease with decreasing temperature,
reminiscent of the pseudo-spin gap behaviours in high-Tc cuprates. This behaviour is hard
to understand within the present model and approximation. One possible explanation may
be given by considering a coexistence of spin density wave (SDW) fluctuations and a charge
density wave (CDW) or its slow fluctuations, although further studies are necessary before
drawing any conclusion.

In summary, we have studied the spin fluctuation-induced superconducting state of quasi-
two dimensionalκ-(BEDT-TTF)2X compounds by using a half-filled triangular Hubbard
model within the FLEX approximation, extending the previous study aboveTc. The energy
gap of(x2 − y2)-type develops belowTc more rapidly than in the BCS model. Resonance
peaks in the dynamical susceptibility are predicted in limited regions of theq-space around
(π, π) and (π,−π). The observedT 3 behaviour of the nuclear spin-lattice relaxation rate
1/T1 is well reproduced with a reasonable order of magnitude. We have also predicted the
doping concentration dependence ofTc in these compounds. Calculations of the SC and AF
instability points in theU/τ againstτ ′/τ plane show that the former is favourable only forτ ′/τ
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larger than∼ 0.3, indicating that an antiferromagnetic instability dose not always accompany
the d-wave superconductivity.

Finally we would like to emphasize that the present mechanism seems to be the only
available mechanism to describe the anisotropic superconductivity in quasi-two-dimensional
κ-type BEDT-TTF compounds [25]. Theoretical results seem to be generally consistent with
available experimental results except for the pseudo-spin gap behaviour of 1/T1 aboveTc [26].
Further experimental and theoretical investigations are desired to confirm this mechanism.

We would like to thank Dr S Nakamura and Dr T Takimoto for helpful discussions.
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